## Math 1131Q Prerequisites Worksheet

| Name:               |  |  |
|---------------------|--|--|
|                     |  |  |
| Discussion Section: |  |  |

Solutions should show all of your work, not just a single final answer.

# Precalculus Review

- **I.** <u>Fractions:</u> Fractions are an integral part of any math class, and you will need to be proficient with them to solve the problems in this course.
- 1. Rewrite the following sum as a single fraction.

$$\frac{1}{a+b} + \frac{2}{a} - \frac{3}{b}$$

2. Rationalize the denominators of the following expressions. A good strategy is to multiply both the numerator and denominator by the conjugate of the denominator. For example,  $2-\sqrt{7}$  has  $2+\sqrt{7}$  as its conjugate.

(a) 
$$\frac{4}{1-\sqrt{3}}$$

(b) 
$$\frac{x-5}{x+\sqrt{5}}$$

II. Difference Quotients: A difference quotient often takes one of the following forms:

$$\frac{f(x+h)-f(x)}{h}$$
,  $\frac{f(a+h)-f(a)}{h}$ , or  $\frac{f(x)-f(a)}{x-a}$ .

Typically in these expressions, x and h are variables with  $h \neq 0$  and a is a fixed value or constant. The first form above is most common and will appear soon in this course. When f is a polynomial or rational function, you can tell when you have finished simplifying the expression because the h in the denominator should cancel.

3. Simplify the difference quotient  $\frac{f(x+h)-f(x)}{h}$  for the given function.

(a) 
$$f(x) = 1 - x^2$$

(b) 
$$f(x) = \frac{1}{x+1}$$

#### III. Interval Notation:

- 4. Write the following in interval notation. Use the symbol  $\cup$  when writing the union of intervals.
  - (a) The open interval with endpoints at 2 and 3.
  - (b) The closed interval with endpoints at 2 and 3.
  - (c) The half-open interval with endpoints at 2 and 3 that contains 2 but not 3.
  - (d) The x-values where the function  $f(x) = \frac{1}{x}$  is defined.

#### IV. Equations of Lines

- 5. Determine an equation of the line through the indicated point with the indicated slope.
  - (a) The line through (3, -2) with slope 7.

(b) The line through (4,1) with slope -2.

## V. Functions:

6. Determine the domain of the following functions (the domain is the set of all x-values where the function f(x) is defined). Write your answer in interval notation, using  $\cup$  if necessary.

(a) 
$$f(x) = \frac{x+4}{x^2-x-6}$$

(b) 
$$f(x) = \sqrt{x^2 - 9}$$

- 7. Consider the function  $f(x) = \frac{x^2 4x 5}{x^2 + 1}$ .
  - (a) Determine all zeros of f.

(b) What are the x- and y-intercepts of the graph of this function? Give your answers as ordered pairs (x, y).

(c) On what interval(s) is f(x) positive? Negative?

# VI. Exponential and Logarithmic Functions:

- 8. Simplify

  - (a)  $\frac{2^{5x}}{2^x}$  (b)  $e^{2x}e^{-3x}$
- (c)  $\frac{e^{2x}-1}{e^x-1}$
- (d)  $\sqrt[3]{5^{2x}}$

- 9. Evaluate  $\log_4(1/64)$ .
- 10. Solve for x exactly: (a)  $\log_2 x + \log_2(x-2) = 3$  and (b)  $\ln x \ln(x^2) = 5$ .

## VII. Trigonometric Functions:

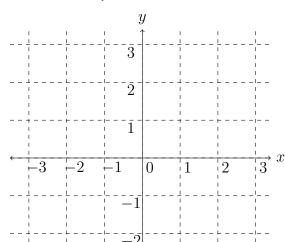
11. On the unit circle mark off the following angles (in radians):

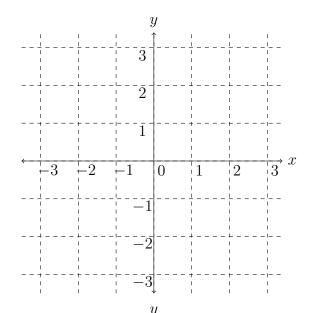
(a) 
$$\frac{\pi}{2}$$
,  $\pi$ , and  $-\frac{\pi}{2}$  together

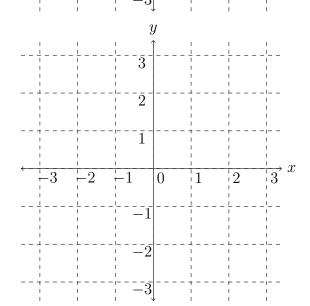
(b)  $\frac{\pi}{3}$  and  $\frac{2\pi}{3}$  together.

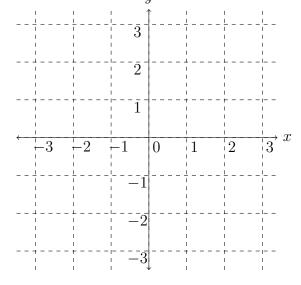
12. Evaluate the following.

(a) 
$$\sin\left(\frac{7\pi}{2}\right)$$


(b) 
$$\cos\left(\frac{-\pi}{2}\right)$$


(c) 
$$\sin\left(101\pi\right)$$


(d) 
$$\sin\left(\frac{\pi}{2} + 2k\pi\right)$$
 where  $k$  is an integer.


VIII. Graphing Equations: Make sure to re-familiarize yourself with the graphs of common functions and equations, e.g., lines, parabolas, basic cubics, circles, square roots, absolute value, piecewise functions, etc.

- 13. Using the axes provided below, sketch a graph of each of the following functions.
  - (a)  $y = (x-1)^3$
  - (b)  $f(x) = \sqrt{4 x^2}$
  - (c)  $y = \frac{1}{x-1}$
  - (d)  $g(x) = \begin{cases} 1 x, & x \le 0 \\ x^2 1, & x > 0 \end{cases}$









Answers to Selected Worksheet Problems

1. 
$$\frac{2b^2 - 3a^2}{ab(a+b)}$$

2. (a) 
$$-2(1+\sqrt{3})$$

(b) 
$$\frac{(x-5)(x-\sqrt{5})}{x^2-5}$$

3. (a) 
$$-2x - h$$
.

(b) 
$$\frac{-1}{(x+h+1)(x+1)}$$
.

4. (a) 
$$(2,3)$$
, (b)  $[2,3]$ , (c)  $[2,3)$ , (d)  $(-\infty,0) \cup (0,\infty)$ .

5. 
$$(a)y = 7x - 23$$
 or  $y + 2 = 7(x - 3)$ , (b)  $y = -2x + 9$  or  $y - 1 = -2(x - 4)$ .

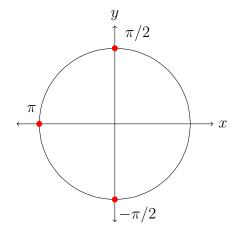
6. (a) 
$$(-\infty, -2) \cup (-2, 3) \cup (3, \infty)$$
.

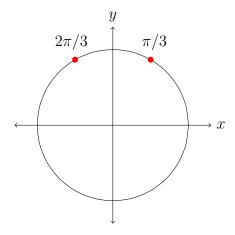
(b) 
$$(-\infty, -3] \cup [3, \infty)$$
.

7. (a) 
$$x = -1$$
 or  $x = 5$ 

(b) 
$$x$$
-intercept: $(-1,0)$ ,  $(5,0)$ .  $y$ -intercept: $(0,-5)$ .

(c) The diagram below indicates where f(x) is positive, negative, and zero.


8. (a) 
$$2^{4x}$$
, (b)  $e^{-x}$ , (c)  $e^x + 1$ , (d)  $5^{2x/3}$ .


$$9. -3.$$

10. (a) 
$$x = 4$$
.

(b) 
$$t = 1/e^5$$
.

11. Here are pictures of the angles.





- 12. (a) -1.
  - (b) 0.
  - (c) 0.
  - (d) 1.
- 13. In Figures 1 through 4 are the graphs. See the captions.

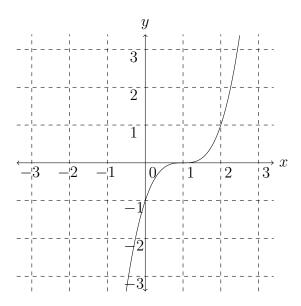



Figure 1: Graph of  $y = (x - 1)^3$ .

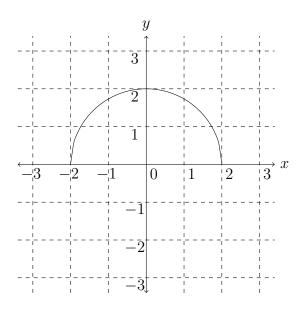



Figure 2: Graph of  $f(x) = \sqrt{4 - x^2}$ .

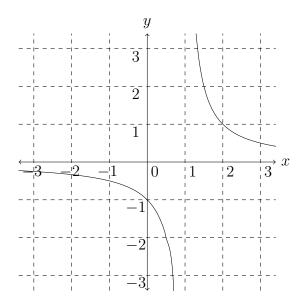



Figure 3: Graph of  $y = \frac{1}{x-1}$ .

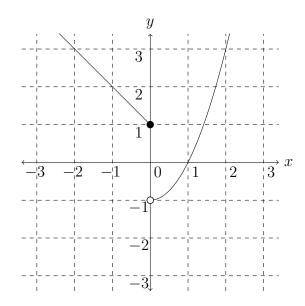



Figure 4: Graph of  $g(x) = \begin{cases} 1-x, & x \leq 0 \\ x^2-1, & x > 0 \end{cases}$ .