Name:			
•			
Discuss	ion Sectio	n·	

Solutions should show all of your work, not just a single final answer.

4.7: Optimization Problems

1. A closed box (top, bottom, and all four sides) needs to be constructed to have a volume of $9\,\mathrm{m}^3$ and a base whose width is twice its length. See Figure 1.

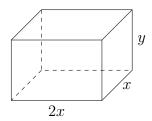


Figure 1: A box

Use calculus to determine the dimensions (length, width, height) of such a box that uses the least amount of material. Justify why your answer corresponds to a minimum, not a maximum.

2. We want to find the points on $y = x^2$ that are closest to (0,3).

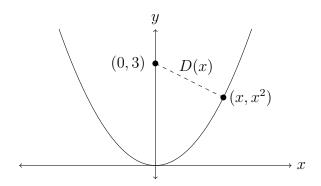


Figure 2: Distance to (0,3) on $y=x^2$.

(a) For each point (x, x^2) on the parabola, find a formula for its distance to (0,3). Call this distance D(x). (See Figure 2.)

(b) Let $f(x) = D(x)^2$, which is the *squared distance* between (x, x^2) and (0, 3). Finding where D(x) is minimal is the same as finding where f(x) is minimal. Determine all x where f(x) has an absolute minimum. The points (x, x^2) for such x are the closest points to (0, 3) on $y = x^2$.

3. Three line segments of length 1 are joined together at endpoints to form a base and the legs of an isosceles trapezoid, as in Figure 3. Let θ in $(0, \pi/2)$ be the common angle measurement between the legs and the line passing through the base of length 1. We want to find the angle θ that maximizes the area of the trapezoid.

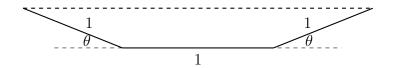


Figure 3: An isosceles trapezoid with base and legs of length 1.

(a) Compute the area $A(\theta)$ of the trapezoid. The general area formula for a trapezoid is $\frac{1}{2}h(b_1+b_2)$, where h is the height and b_1 and b_2 are the lengths of the bases. (Hint: Break up the trapezoid into a rectangle with two right triangles at both ends. Use trigonometry to compute the height and the length of the longer base in terms of θ .)

(b) Find all solutions to $A'(\theta) = 0$ with $0 < \theta < \pi/2$. (Hint: Write $A'(\theta)$ entirely in terms of $\cos \theta$. The answer is $not \theta = \pi/4 = 45^{\circ}$.)

(c) Verify that the area $A(\theta)$ is a maximum, not a minimum, at the angle found in part (b) and compute this maximum area.

4.8: Newton's Method

4. Apply Newton's method to estimate the solution of $x^3 - x - 1 = 0$ by taking $x_1 = 1$ and finding the least n such that x_n and x_{n+1} agree to three digits after the decimal point.

5. The number π is a solution of $\sin x = 0$ close to 3 (see Figure 4). You will use Newton's method for $\sin x = 0$ to create numerical estimates for π .

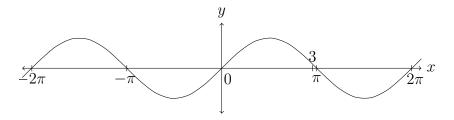


Figure 4: Graph of $y = \sin x$.

(a) Write out the recursion for Newton's method used to solve $\sin x = 0$.

(b) Using Newton's method for $\sin x = 0$ with $x_1 = 3$, find the first n for which x_n and x_{n+1} agree to 5 digits after the decimal point. (Use radians, not degrees!)

(c) For the n you found in part (b), to how many digits after the decimal point does x_n actually agree with π ?

6. In Figure 5 is the graph of $f(x) = \ln(x) - 1$ for 0 < x < 4. It crosses the x-axis at x = e. You will use Newton's method for f(x) = 0 to create numerical estimates for e.

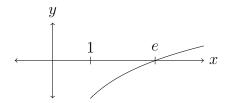


Figure 5: Graph of $y = \ln(x) - 1$.

(a) Using Newton's method for the equation $\ln(x) - 1 = 0$ with $x_1 = 1$, tabulate x_n to find the first n for which x_n and x_{n+1} agree to 5 digits after the decimal point.

(b) For the n you found in part (a), to how many digits after the decimal point does x_n actually agree with e?

Answers to Selected Problems:

- 1. The dimension are length $= x = \frac{3}{2}$, width = 2x = 3, and height $= \frac{9}{2(3/2)^2} = 2$.
- 2. (a) $D(x) = \sqrt{x^2 + (x^2 3)^2}$
 - (b) f(x) has absolute minima at $x = \pm \sqrt{5/2}$
- 3. (a) $A(\theta) = \sin \theta + (\sin \theta)(\cos \theta)$
 - (b) $\theta = \pi/3$
 - (c) Since $A''(\pi/3) < 0$, the maximum area is $\frac{3\sqrt{3}}{4}$
- 4. Use n = 5: $x \approx 1.3247...$
- 5. (a) $x_{n+1} = x_n \tan(x_n)$
 - (b) n = 3: $x \approx 3.14159265330$
 - (c) nine digits after the decimal point
- 6. (a) n = 5: $x_5 \approx 2.71828106$
 - (b) The number x_5 agrees with e to 6 digits after the decimal point, not just 5 digits.