Name: _			
_			
Discussion	on Section		

Solutions should show all of your work, not just a single final answer.

4.1: Maximum and Minimum Values

1. For the following functions, find all critical numbers **exactly**.

(a)
$$f(x) = x^5 - 2x^3$$

(b)
$$f(x) = x - 2\sin x$$
 for $0 < x < 2\pi$

(c)
$$f(x) = e^{-x} - e^{-3x}$$
 for $x > 0$

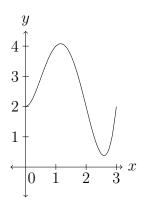
2. Use calculus to find the absolute maximum and minimum values of the following functions on the given intervals. Give your answers **exactly** and show supporting work.

(a)
$$f(x) = x^3 - 2x^2 + x + 1$$
 on $[0, 1]$

(b)
$$x^{1/3}(x-2)$$
 on $[-1,3]$

(c)
$$f(x) = (7x - 1)e^{-2x}$$
 on $[0, 1]$

3. Below is the graph of $f(x) = x^4 - 5x^3 + 6x^2 + 2$. On the interval [0,3] determine the maximum and minimum value of the *slope* of the graph, *i.e.*, the maximum and minimum values of g(x) = f'(x).



4. T/F (with justification) If f(x) is a differentiable function on (a, b) and f(x) has a local maximum or minimum value at x = c in (a, b) then f'(c) = 0.

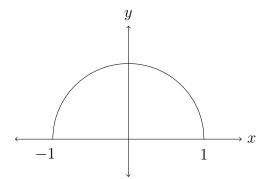
5. T/F (with justification) If f(x) is a differentiable function on (a, b) and f'(c) = 0 for a number c in (a, b) then f(x) has a local maximum or minimum value at x = c.

4.2: Mean Value Theorem

6. Find every number c that satisfies the conclusion of the Mean Value Theorem for the function $f(x) = x^3 - 4x^2 + x$ on the interval [0, 1].

7. T/F (with justification) The function $1 - \frac{1}{x^4}$ satisfies the hypotheses of Rolle's Theorem on the interval [-1, 1].

8. T/F (with justification) The graph of the semicircle on [-1,1] below fits the hypotheses of the Mean Value Theorem.



Answers to Selected Problems:

- 1. (a) 0 and $\pm \sqrt{6/5}$
 - (b) $x = \pi/3 \text{ and } x = 5\pi/3$
 - (c) $x = \frac{1}{2} \ln 3$
- 2. (a) On [0,1] the absolute maximum value of f(x) is 31/27 and the absolute minimum value of f(x) is 1.
 - (b) On [-1,3], the absolute maximum value of f(x) is 3 and the absolute minimum value of f(x) is $-(3/2)/2^{1/3} = -3/2^{4/3}$.
 - (c) The absolute maximum value of f(x) is $(7/2)e^{-9/7}$, and the absolute minimum value of f(x) is -1.
- 3. f'(x) = g(x) has maximum value 9 and minimum value -4.
- 4. True
- 5. False
- 6. $c = (8 \sqrt{28})/6$
- 7. False
- 8. True