Math 2141 - Section 1 - Advanced Calculus
I. 2 Sets Activity

1. If both $A \subseteq B$ and $B \subseteq A$, what can we say?

Important Note:

Section I.2.4: Unions Intersections and Complements
Let A and B be sets.
Definition 1. The union of A and B, denoted $A \cup B$ and read A union B, is

$$
A \cup B=\{x \mid x \in A \text { or } x \in B\} .
$$

Definition 2. The intersection of A and B, denoted $A \cap B$ and read A intersect B, is

$$
A \cup B=\{x \mid x \in A \text { and } x \in B\} .
$$

Definition 3. The sets A and B are disjoint if $A \cap B=\emptyset$.
Definition 4. The set difference of A and B, denoted $A-B$ or $A \backslash B$ and read A minus B, is

$$
A-B=\{x \mid x \in A \text { and } x \notin B\} .
$$

2. Read over the definitions above.
3. Draw a general Venn Diagram representing two intersecting sets that are not equal. Indicate which region represents $A \cup B, A \cap B$ and $A-B$. What does it look like to have a Venn Diagram of disjoint sets?
4. Prove $A \subseteq A \cup B$. When do we get eqaulity?
5. Prove $A \cap B \subseteq A$. When do we get eqaulity?

When we have a set of sets, this is usually called a class or a family. It is a set where each member is also a set. These are usually denoted by script letters let $\mathcal{A}, \mathcal{B}, \mathcal{C}$, etc.
6. What does this set represent? There are a few things that appear below we haven't mentioned yet. What do you think they mean?

$$
\mathcal{A}=\left\{\left[\frac{1}{n}, 1\right]: n \in \mathbb{Z}^{+}\right\}
$$

7. Just like we can use Σ notation to add up a bunch of numbers, we can use \cap and \cup notation to take the union or intersection of all the sets in a class or family of sets. For example, we could write

$$
\bigcup_{A \in \mathcal{A}} A \quad \text { or } \quad \bigcap_{A \in \mathcal{A}} A \text {. }
$$

What do these mean?
8. What is

$$
\bigcup_{A \in \mathcal{A}} A \quad \text { when } \mathcal{A}=\left\{\left[\frac{1}{n}, 1\right]: n \in \mathbb{Z}^{+}\right\} ?
$$

9. What is

$$
\bigcap_{A \in \mathcal{A}} A \quad \text { when } \mathcal{A}=\left\{\left[\frac{1}{n}, 1\right]: n \in \mathbb{Z}^{+}\right\} ?
$$

10. What is

$$
\bigcup_{A \in \mathcal{A}} A \quad \text { when } \mathcal{A}=\left\{\left(\frac{1}{n}, 1\right): n \in \mathbb{Z}^{+}\right\} ?
$$

11. What is

$$
\bigcap_{A \in \mathcal{A}} A \quad \text { when } \mathcal{A}=\left\{\left(\frac{1}{n}, 1\right): n \in \mathbb{Z}^{+}\right\} ?
$$

12. What if we only considered $n \geq 2$?
